题目内容
已知p:(x+2)(x-10)≤0,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要不充分条件,求实数m的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出p,q的等价条件,利用充分条件和必要条件的定义建立条件关系即可得到结论.
解答:
解:由(x+2)(x-10)≤0,解得-2≤x≤10,p:-2≤x≤10,
由x2-2x+1-m2≤0(m>0),得[x-(1-m)][x-(1+m)]≤0(m>0),
即1-m≤x≤1+m,
若¬p是¬q的必要不充分条件,
则p是q的充分不必要条件,
则
,即
,解得m≥9,
即m的取值范围是m≥9.
由x2-2x+1-m2≤0(m>0),得[x-(1-m)][x-(1+m)]≤0(m>0),
即1-m≤x≤1+m,
若¬p是¬q的必要不充分条件,
则p是q的充分不必要条件,
则
|
|
即m的取值范围是m≥9.
点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键.
练习册系列答案
相关题目