题目内容
若函数f(x)=x3-3x-a有3个不同零点,则实数a的取值范围是( )
| A、(-2,2) |
| B、[-2,2] |
| C、(-∞,-1) |
| D、(1,+∞) |
考点:利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:先构造两个简单函数转化为二者交点的问题,从而可得答案.
解答:
解:设g(x)=x3,h(x)=3x-a
∵f(x)=x3-3x+a有三个不同零点,即g(x)与h(x)有三个交点
∵g'(x)=3x2,h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x2=3,得x=1,或x=-1
当x=1时,g(x)=1,h(x)=3-a=1,得a=2
当x=-1时,g(x)=-1,h(x)=-3-a=-1,得a=-2
要使得g(x)与h(x)有三个交点,则-2<a<2
故选:A.
∵f(x)=x3-3x+a有三个不同零点,即g(x)与h(x)有三个交点
∵g'(x)=3x2,h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x2=3,得x=1,或x=-1
当x=1时,g(x)=1,h(x)=3-a=1,得a=2
当x=-1时,g(x)=-1,h(x)=-3-a=-1,得a=-2
要使得g(x)与h(x)有三个交点,则-2<a<2
故选:A.
点评:本题主要考查函数零点的判定方法--转化为两个简单函数的交点问题.属中档题.
练习册系列答案
相关题目
| A、85;87 |
| B、84; 86 |
| C、84;85 |
| D、85;86 |
函数y=sin(x+
)的图象可由y=sinx图象经过下述( )变换得到.
| π |
| 3 |
A、向左平移
| ||
B、向右平移
| ||
C、向上平移
| ||
D、向下平移
|
从0,1,2,…,9这十个数码中不放回地随机取n(2≤n≤10)个数码,能排成n位偶数的概率记为Pn,则数列{Pn}( )
| A、既是等差数列又是等比数列 |
| B、是等差数列但不是等比数列 |
| C、是等比数列但不是等差数列 |
| D、既不是等差数列也不是等比数列 |
若(
+
)n的展开式中前三项的系数成等差数列,则展开式中的有理项共有( )
| x |
| 1 | |||
2
|
| A、2项 | B、3项 | C、4项 | D、5项 |