题目内容

在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2
2
cosC+2=0.
(1)求角C的大小;
(2)若b=
2
a,△ABC的面积为
2
2
sinAsinB,求sinA及c的值.
考点:余弦定理,正弦定理
专题:计算题,解三角形
分析:(1)利用正弦定理和已知等式,化简可求得cosC的值,进而求C.
(2)利用余弦定理可求得c与a的关系,进而求得sinC,然后利用三角形面积公式和已知等式求得c.
解答: 解:(1)∵cos2C+2
2
cosC+2=0.
∴2cos2C+2
2
cosC+1=0,
即(
2
cosC+1)2=0,
∴cosC=-
2
2

∵0<∠C<π,
∴∠C=
4

(2)∵c2=a2+b2-2abcosC=3a2+2a2=5a2
∴c=
5
a,
∴sinC=
5
sinA,
∴sinA=
1
5
sinC=
10
10

∵S△ABC=
1
2
absinC=
2
2
sinAsinB,
1
2
absinC=
2
2
sinAsinB,
a
sinA
b
sinB
•sinC=(
c
sinC
2sinC=
2

∴c=
2
•sinC
=1
点评:本题主要考查了正弦定理和余弦定理的应用.在解三角形的问题中应灵活运用余弦和正弦定理实现边角的转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网