题目内容

19.若双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{t}$=1的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦点相同,则双曲线的虚轴长为6.

分析 利用双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{t}$=1的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦点相同,可得7+t=25-9,求出t,即可求出双曲线的虚轴长.

解答 解:∵双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{t}$=1的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的焦点相同,
∴7+t=25-9,
∴t=9
∴双曲线的虚轴长为6.
故答案为:6.

点评 本题考查椭圆、双曲线的性质,考查双曲线的虚轴长,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网