题目内容

5.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$若f(m)>1,则m的取值范围是(  )
A.(1,+∞)B.(-$\sqrt{3}$,1)C.(-∞,-$\sqrt{3}$)∪(1,+∞)D.(-∞,-$\sqrt{3}$)

分析 由题意可得,$\left\{\begin{array}{l}{m≥0}\\{{(\frac{1}{3})}^{-m}-2>1}\end{array}\right.$①,或 $\left\{\begin{array}{l}{m<0}\\{{2log}_{3}(-m)>1}\end{array}\right.$②,分别求得①②的解集,再取并集,即得所求.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$,f(m)>1,
∴$\left\{\begin{array}{l}{m≥0}\\{{(\frac{1}{3})}^{-m}-2>1}\end{array}\right.$  ①,或 $\left\{\begin{array}{l}{m<0}\\{{2log}_{3}(-m)>1}\end{array}\right.$ ②.
解①求得m>1,解②求得m<-$\sqrt{3}$,故m的取值范围是(-∞,-$\sqrt{3}$)∪(1,+∞),
故选:C.

点评 本题主要考查分段函数的应用,解对数不等式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网