题目内容
14.${∫}_{1}^{e}$(x+$\frac{1}{x}$)dx=( )| A. | e2 | B. | $\frac{{e}^{2}+1}{2}$ | C. | $\frac{{e}^{2}-1}{2}$ | D. | $\frac{{e}^{2}+3}{2}$ |
分析 根据定积分的计算法则计算即可.
解答 解:${∫}_{1}^{e}$(x+$\frac{1}{x}$)dx=($\frac{1}{2}$x2+lnx)|${\;}_{1}^{e}$=($\frac{1}{2}$e2+1)-($\frac{1}{2}$+0)=$\frac{{e}^{2}+1}{2}$,
故选:B
点评 本题考查了定积分的计算,属于基础题.
练习册系列答案
相关题目
2.设P={x|x<4},Q={x|x2<4},则( )
| A. | P⊆Q | B. | Q⊆P | C. | P⊆∁RQ | D. | Q⊆∁RP |
5.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$若f(m)>1,则m的取值范围是( )
| A. | (1,+∞) | B. | (-$\sqrt{3}$,1) | C. | (-∞,-$\sqrt{3}$)∪(1,+∞) | D. | (-∞,-$\sqrt{3}$) |
2.
如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,则λ+μ=( )
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | 1 |
3.设?x?表示不小于实数x的最小整数,如?2.6?=3,?-3.5?=-3.已知函数f(x)=?x?2-2?x?,若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是( )
| A. | $[{-\frac{5}{2},-1})∪[2,5)$ | B. | $({-\frac{4}{3},-1}]∪[5,10)$ | C. | $[{-1,-\frac{2}{3}})∪[5,10)$ | D. | $[{-\frac{4}{3},-1}]∪[5,10)$ |