题目内容
6.在区间$[-\sqrt{2},\sqrt{2}]$中随机取一个实数k,则事件“直线y=kx与圆(x-3)2+y2=1相交”发生的概率为( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
分析 利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.
解答 解:圆(x-3)2+y2=1的圆心为(3,0),半径为1.
要使直线y=kx与圆(x-3)2+y2=1相交,
则圆心到直线y=kx的距离$\frac{|3k|}{\sqrt{{k}^{2}+1}}$<1,解得-$\frac{\sqrt{2}}{4}$<k<$\frac{\sqrt{2}}{4}$.
在区间$[-\sqrt{2},\sqrt{2}]$中随机取一个实数k,则事件“直线y=kx与圆(x-2)2+y2=1相交”
发生的概率为$\frac{\frac{\sqrt{2}}{2}}{2\sqrt{2}}$=$\frac{1}{4}$.
故选:B.
点评 本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.
练习册系列答案
相关题目
16.射洪县教育局从去年参加了计算机职称考试,并且年龄在[25,55]岁的教师中随机抽取n人的成绩进行了调查,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图,并求a、p、q的值;
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.
| 组数 | 分组 | 低碳族的人数 | 占本组的频率 |
| 第一组 | [25,30) | 120 | 0.6 |
| 第二组 | [30,35) | 195 | p |
| 第三组 | [35,40) | 100 | 0.5 |
| 第四组 | [40,45) | a | 0.4 |
| 第五组 | [45,50) | 30 | q |
| 第六组 | [50,55) | 15 | 0.3 |
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.
14.已知定义在区间[-3,3]上的单调函数f(x)满足:对任意的x∈[-3,3],都有f(f(x)-2x)=6,则在[-3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{5}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
15.已知函数$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,且函数$f(x+\frac{π}{12})$是偶函数,则下列判断正确的是( )
| A. | 函数f(x)的最小正周期为2π | |
| B. | 函数f(x)在区间$[\frac{3π}{4},π]$上单调递增 | |
| C. | 函数f(x)的图象关于直线$x=-\frac{7π}{12}$对称 | |
| D. | 函数f(x)的图象关于点$(\frac{7π}{12},0)$对称 |