题目内容

8.已知点F是抛物线y2=4x的焦点,M、N是该抛物线上的两点,且|MF|+|NF|=6,则线段MN的中点到y轴的距离为(  )
A.$\frac{5}{2}$B.$\frac{3}{2}$C.2D.3

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出M,N的中点横坐标,可得线段MN的中点到y轴的距离.

解答 解:∵F是抛物线y2=4x的焦点
∴F(1,0),准线方程x=-1,
设M(x1,y1),N(x2,y2
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴线段MN的中点横坐标为2,
∴线段NM的中点到y轴的距离为2.
故选:C.

点评 本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网