题目内容

19.设不等式组 $\left\{\begin{array}{l}{x-2y+2≥0}\\{3x-2y-3≤0}\\{x+y-1≥0}\end{array}\right.$,表示的平面区域为D,P(x,y)∈D,若x2+y2≥m恒成立,则实数m的最大值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

分析 由约束条件作出可行域,利用点到直线的距离公式求得可行域内的点到原点的距离的最小值,则满足x2+y2≥m恒成立的实数m的最大值可求.

解答 解:由约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$作出可行域如图,

由图可知,可行域内的点到原点的距离的最小值为$\frac{|-1|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,
∴(x2+y2min=$\frac{1}{2}$,则满足x2+y2≥m恒成立的实数m的最大值为$\frac{1}{2}$.
故选:A.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网