题目内容
9.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$f(log23)的值为( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{24}$ |
分析 根据log23的范围循环代入分段函数的下段,当满足自变量的值大于等于3时代入f(x)的解析式求值.
解答 解:由f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,
∵log23<3,∴f(log23)=f(log23+1)=f(log26),
由log26<3,∴f(log26)=f(log26+1)=f(log212),
∵log212>3,∴f(log23)=f(log212)=$(\frac{1}{2})^{lo{g}_{2}12}$=$\frac{1}{12}$.
故选:C.
点评 本题考查了对数的运算性质,考查了分段函数的函数值的求法,关键是注意适用范围,是基础题.
练习册系列答案
相关题目
19.已知a=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,则( )
| A. | b<a<c | B. | c<b<a | C. | b<c<a | D. | a<b<c |
20.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤6}\\{x≥1}\end{array}\right.$,则z=2|x-2|+|y|的最小值是( )
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
17.下列说法正确的是( )
| A. | ?x,y∈R,若x+y≠0,则x≠1且y≠-1 | |
| B. | a∈R,“$\frac{1}{a}$<1“是“a>1“的必要不充分条件 | |
| C. | 命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
| D. | “若am2<bm2,则a<b”的逆命题为真命题 |
4.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且$\overrightarrow{AO}$=3$\overrightarrow{MO}$,则$\overrightarrow{MB}$$•\overrightarrow{MC}$的值是( )
| A. | -$\frac{5}{3}$ | B. | -$\frac{7}{6}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{6}$ |
14.已知A是抛物线M:y2=2px(p>0)与圆C在第一象限的公共点,其中圆心C(0,4),点A到M的焦点F的距离与C的半径相等,M上一动点到其准线与到点C的距离之和的最小值等于C的直径,O为坐标原点,则直线OA被圆C所截得的弦长为( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | $\frac{7\sqrt{2}}{6}$ | D. | $\frac{7\sqrt{2}}{3}$ |
1.
图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b,i的值分别为8,10,0,则输出的a和i和值分别为( )
| A. | 2,5 | B. | 2,4 | C. | 0,4 | D. | 0,5 |
13.命题p:?x∈R,tanx>1,命题q:抛物线y=$\frac{1}{3}$x2的焦点到准线的距离为$\frac{1}{6}$,那么下列命题为真命题的是( )
| A. | ¬p | B. | (¬p)∨q | C. | p∧q | D. | p∧(¬q) |