题目内容
2.已知复数Z=i(1-i),则复数Z的共轭复数为1-i.分析 利用复数的运算法则、共轭复数的定义即可得出.
解答 解:∵复数Z=i(1-i)=i+1,
则复数Z的共轭复数=1-i.
故答案为:1-i.
点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
13.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作直线y=$\frac{b}{a}$x的垂线,垂足为A,交C的左支于B点,若$\overrightarrow{OF}$+$\overrightarrow{OB}$=2$\overrightarrow{OA}$,则C的离心率为( )
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
17.不等式|2x-log2x|<2x+|log2x|成立,则( )
| A. | 1<x<2 | B. | 0<x<1 | C. | x>1 | D. | x>2 |
14.同时具有性质:
①最小正周期是π;
②图象关于直线x=$\frac{π}{3}$对称;
③在区间$[{\frac{5π}{6},π}]$上是单调递增函数”的一个函数可以是( )
①最小正周期是π;
②图象关于直线x=$\frac{π}{3}$对称;
③在区间$[{\frac{5π}{6},π}]$上是单调递增函数”的一个函数可以是( )
| A. | $y=cos(\frac{x}{2}+\frac{π}{6})$ | B. | $y=sin(2x+\frac{5π}{6})$ | C. | $y=cos(2x-\frac{π}{3})$ | D. | $y=sin(2x-\frac{π}{6})$ |