题目内容
10.如果袋中装有数量差别很大而大小相同的白球和黄球(只是颜色不同)若干个,从中任取一球,取了10次有7个白球,估计袋中数量最多的是白球.分析 利用频率估计概率,结合从中任取一球,取了10次有7个白球,即可得出结论.
解答 解:取了10次有7个白球,则取出白球的频率是0.7,估计其概率是0.7,那么取出黄球的概率约是0.3,
取出白球的概率大于取出黄球的概率,所以估计袋中数量最多的是白球.
故答案为:白.
点评 本题考查概率知识,考查频率估计概率,比较基础.
练习册系列答案
相关题目
18.已知偶函数f(x)的定义域为集合M={x|ln|x|≤5},f(5)=50,当x>0且x∈M时,xf′(x)<2f(x)恒成立,则不等式$\frac{f(x)}{{x}^{2}}$≤2的解集为( )
| A. | [-e5,-5]∪[5,e5] | B. | [-5,0)∪(0,5] | C. | [-e2,-2]∪[2,e2] | D. | [-2,0]∪(0,2] |
5.
如图,将抛物线C1:y=$\frac{1}{2}$x2+2x沿x轴对称后,向右平移3个单位,再向下平移5个单位,得到抛物线C2,若抛物线C1的顶点为A,点P是抛物线C2上一点,则△POA的面积的最小值为( )
| A. | 3 | B. | 3.5 | C. | 4 | D. | 4.5 |
19.已知f(x)=x2+2x,则f′(2)=( )
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |