题目内容
已知函数f(x)=
,则f(f(π))=( )
|
| A、1 | B、0 | C、0或1 | D、不确定 |
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答:
解:∵函数f(x)=
,
∴f(π)=0,
(f(π))=f(0)=1.
故选:A.
|
∴f(π)=0,
(f(π))=f(0)=1.
故选:A.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
数列-1,
,-
,
,…的一个通项公式是( )
| 4 |
| 3 |
| 9 |
| 5 |
| 16 |
| 7 |
A、an=(-1)n•
| ||
B、an=(-1)n•
| ||
C、an=(-1)n•
| ||
D、an=(-1)n•
|
已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(
)=1如果对于0<x<y,都有f(x)>f(y),不等式f(-x)+f(3-x)≥-2的解集为( )
| 1 |
| 2 |
| A、[-1,0)∪(3,4] |
| B、[-1,0) |
| C、(3,4] |
| D、[-1,4] |
函数f(x)=
+
的定义域为( )
| 1 | ||
|
| 4-x2 |
| A、[-2,0)∪(0,2] |
| B、(-1,0)∪(0,2] |
| C、[-2,2] |
| D、(-1,2] |