题目内容

4.f(x)=$\frac{x^2}{1+x^2}$,求f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)+f(2)+f(3)+…+f(2016)

分析 先求出f(x)+f($\frac{1}{x}$)=1,由此能求出f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)+f(2)+f(3)+…+f(2016)的结果.

解答 解:∵f(x)=$\frac{x^2}{1+x^2}$,
∴f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{\frac{1}{{x}^{2}}}{1+\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1,
∴f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)+f(2)+f(3)+…+f(2016)
=2015[f($\frac{1}{2}$)+f(2)]
=2015.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,解题的关键是推导出f(x)+f($\frac{1}{x}$)=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网