题目内容
在下列四组函数中,函数f(x)与函数 g(x)相等的是( )
A、f(x)=x-1,g(x)=
| |||||
B、f(x)=|x|,g(x)=(
| |||||
| C、f(x)=x+1(x∈R),g(x)=x+1 (x∈Z) | |||||
D、f(x)=|x+1|,g(x)=
|
考点:判断两个函数是否为同一函数
专题:函数的性质及应用
分析:利用函数的三要素即可判定函数是否为同一函数.
解答:
解:对于D:f(x)=|x+1|,当x+1≥0,即x≥-1时,f(x)=x+1;
当x+1<0,即x<-1时,f(x)=-x-1.
∴函数f(x)与g(x)是同一函数.
故选:D.
当x+1<0,即x<-1时,f(x)=-x-1.
∴函数f(x)与g(x)是同一函数.
故选:D.
点评:本题考查了函数的三要素判定函数是否为同一函数,属于基础题.
练习册系列答案
相关题目
如果偶函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是( )
| A、增函数且最大值是-5 |
| B、减函数且最大值是-5 |
| C、增函数且最小值是-5 |
| D、减函数且最小值是-5 |
在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的是( )
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”.
其中,正确结论的是( )
| A、①②④ | B、①②③ |
| C、①③④ | D、①②③④ |
函数y=(a2-3a+3)•ax(x∈N+)为正整数指数函数,则a等于( )
| A、1 | B、2 |
| C、1或2 | D、以上都不对 |
若复数z=(a2-2)+(a+
)i为纯虚数,则
的虚部为( )
| 2 |
| a+i2013 | ||
|
A、2
| ||||
B、2
| ||||
C、
| ||||
D、
|
已知函数f(x)=x2-cosx,若x1,x2∈[-
,
],且f(x1)>f(x2),则必有( )
| π |
| 2 |
| π |
| 2 |
| A、x1>x2 |
| B、x1>|x2| |
| C、x1<x2 |
| D、|x1|>x2 |
设p:函数f(x)=(m-3)x3在R上是减函数,q:0<m<3,则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
一只蚂蚁在边长为5的等边三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|