题目内容

19.求证:($\frac{1}{si{n}^{4}α}$-1)($\frac{1}{co{s}^{4}α}$-1)≥9.

分析 将不等式左边通分后,利用平方差公式,同角三角函数基本关系式,二倍角的正弦函数公式化简后可得$\frac{8}{si{n}^{2}2α}$+1,利用正弦函数的图象和性质即可得解.

解答 证明:($\frac{1}{si{n}^{4}α}$-1)($\frac{1}{co{s}^{4}α}$-1)
=$\frac{1-si{n}^{4}α}{si{n}^{4}α}$×$\frac{1-co{s}^{4}α}{co{s}^{4}α}$
=$\frac{(1-si{n}^{2}α)(1+si{n}^{2}α)(1-co{s}^{2}α)(1+co{s}^{2}α)}{si{n}^{4}αco{s}^{4}α}$
=$\frac{(1+si{n}^{2}α)(1+co{s}^{2}α)}{si{n}^{2}αco{s}^{2}α}$
=$\frac{2+si{n}^{2}αco{s}^{2}α}{si{n}^{2}αco{s}^{2}α}$
=$\frac{2}{si{n}^{2}αco{s}^{2}α}$+1
=$\frac{8}{si{n}^{2}2α}$+1≥9.

点评 本题主要考查了平方差公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了正弦函数的图象和性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网