题目内容


如图,在多面体ABCA1B1C1中,四边形ABB1A1是正方形,ACAB=1,A1CA1BB1C1BCB1C1BC.

(1)求证:平面A1AC⊥平面ABC

(2)求证:AB1∥平面A1C1C.


[证明] (1)∵四边形ABB1A1为正方形,

A1AABAC=1,A1AAB.

A1B.

A1CA1B,∴A1C

∴∠A1AC=90°,∴A1AAC.

ABACA,∴A1A⊥平面ABC.

又∵A1A⊂平面A1AC

∴平面A1AC⊥平面ABC.

(2)取BC的中点E,连接AEC1EB1E.

B1C1BCB1C1BC

B1C1ECB1C1EC

∴四边形CEB1C1为平行四边形.∴B1EC1C.

C1C⊂平面A1C1CB1E⊄平面A1C1C

B1E∥平面A1C1C.

B1C1BCB1C1BC

B1C1BEB1C1BE

∴四边形BB1C1E为平行四边形,

B1BC1E,且B1BC1E.

又∵四边形ABB1A1是正方形,

A1AC1E,且A1AC1E

∴四边形AEC1A1为平行四边形,∴AEA1C1.

A1C1⊂平面A1C1CAE⊄平面A1C1C

AE∥平面A1C1C.

AEB1EE,∴平面B1AE∥平面A1C1C.

AB1⊂平面B1AE,∴AB1∥平面A1C1C.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网