题目内容

15.已知a,b,c分别为△ABC三个内角A、B、C的对边,c=2,且(2+b)(sinC-sinB)=a(sinA-sinB).
(Ⅰ)求∠C的大小;
(Ⅱ)求△ABC周长l的最大值.

分析 (I)由c=2,且(2+b)(sinC-sinB)=a(sinA-sinB).由正弦定理可得:(c+b)(c-b)=a(a-b),化为:a2+b2-c2=ab.再利用余弦定理即可得出C.
(II)由(I)可得:A+B=$\frac{2π}{3}$.可得B=$\frac{2π}{3}$-A$(0<A<\frac{2π}{3})$.由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{2}{sin\frac{π}{3}}$=$\frac{4\sqrt{3}}{3}$.可得a=$\frac{4\sqrt{3}}{3}$sinA,b=$\frac{4\sqrt{3}}{3}$sinB.可得a+b+c=$\frac{4\sqrt{3}}{3}$sinA+$\frac{4\sqrt{3}}{3}$sinB+2=4sin$(A+\frac{π}{6})$+2.即可得出.

解答 解:(I)由c=2,且(2+b)(sinC-sinB)=a(sinA-sinB).
由正弦定理可得:(c+b)(c-b)=a(a-b),化为:a2+b2-c2=ab.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,C∈(0,π).
∴C=$\frac{π}{3}$.
(II)由(I)可得:A+B=$\frac{2π}{3}$.
∴B=$\frac{2π}{3}$-A$(0<A<\frac{2π}{3})$.
由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{2}{sin\frac{π}{3}}$=$\frac{4\sqrt{3}}{3}$.
∴a=$\frac{4\sqrt{3}}{3}$sinA,b=$\frac{4\sqrt{3}}{3}$sinB.
∴a+b+c=$\frac{4\sqrt{3}}{3}$sinA+$\frac{4\sqrt{3}}{3}$sinB+2
=$\frac{4\sqrt{3}}{3}$[sinA+sin($\frac{2π}{3}$-A)]+2
=$\frac{4\sqrt{3}}{3}$($\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA)+2
=4sin$(A+\frac{π}{6})$+2.
故当A+$\frac{π}{6}$=$\frac{π}{2}$时,△ABC周长l的最大值为6.

点评 本题考查了正弦定理、余弦定理、和差公式、三角函数的单调性、三角形内角和定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网