题目内容
6.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )| A. | 内切 | B. | 相交 | C. | 外切 | D. | 相离 |
分析 根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.
解答 解:圆的标准方程为M:x2+(y-a)2=a2 (a>0),
则圆心为(0,a),半径R=a,
圆心到直线x+y=0的距离d=$\frac{a}{\sqrt{2}}$,
∵圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,
∴2$\sqrt{{a}^{2}-\frac{{a}^{2}}{2}}$=2,
∴a=$\sqrt{2}$,
则圆心为M(0,$\sqrt{2}$),半径R=$\sqrt{2}$,
圆N:(x-1)2+(y-1)2=1的圆心为N(1,1),半径r=1,
则MN=$\sqrt{1+(\sqrt{2}-1)^{2}}$,
∵R+r=$\sqrt{2}$+1,R-r=$\sqrt{2}$-1,
∴R-r<$\sqrt{1+(\sqrt{2}-1)^{2}}$<R+r,
即两个圆相交.
故选:B.
点评 本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.
练习册系列答案
相关题目
2.设全集U={-3,-2,-1,0,1,2,3},集合A={x∈Z|x2-2x-3≤0},则∁UA=( )
| A. | {-3,-2} | B. | {2,3} | C. | (-3,-2) | D. | (2,3) |
17.函数y=sinx-cosx,则f'(π)的值是( )
| A. | -1 | B. | 0 | C. | 1 | D. | π |
11.已知f(x)=$\frac{1}{2}$x+sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],则导函数f′(x)是( )
| A. | 仅有极小值的奇函数 | B. | 仅有极小值的偶函数 | ||
| C. | 仅有极大值的偶函数 | D. | 既有极小值也有极大值的奇函数 |
18.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚,车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调査,并统计得出某款车的使用年限x与所支出的总费用y(万元)有如下的数据资料:
若由资料知y对x呈线性相关关系.试求:
1线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
2估计使用年限为10年时,车的使用总费用是多少?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 总费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
1线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
2估计使用年限为10年时,车的使用总费用是多少?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
15.设实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y-4≤0}\end{array}\right.$,若对于任意b∈[0,1],不等式ax-by>b恒成立,则实数a的取值范围是( )
| A. | ($\frac{2}{3}$,4) | B. | ($\frac{2}{3}$,+∞) | C. | (2,+∞) | D. | (4,+∞) |