ÌâÄ¿ÄÚÈÝ
18£®Ëæ×ÅÈËÃǾ¼ÃÊÕÈëµÄ²»¶ÏÔö³¤£¬¸öÈ˹ºÂò¼ÒÍ¥½Î³µÒѲ»ÔÙÊÇÒ»ÖÖʱÉУ¬³µµÄʹÓ÷ÑÓã¬ÓÈÆäÊÇËæ×ÅʹÓÃÄêÏÞµÄÔö¶à£¬ËùÖ§³öµÄ·ÑÓõ½µ×»áÔö³¤¶àÉÙ£¬Ò»Ö±Êǹº³µÒ»×å·Ç³£¹ØÐĵÄÎÊÌ⣮ijÆû³µÏúÊÛ¹«Ë¾×öÁËÒ»´Î³éÑùµ÷–Ë£¬²¢Í³¼ÆµÃ³öij¿î³µµÄʹÓÃÄêÏÞxÓëËùÖ§³öµÄ×Ü·ÑÓÃy£¨ÍòÔª£©ÓÐÈçϵÄÊý¾Ý×ÊÁÏ£º| ʹÓÃÄêÏÞx | 2 | 3 | 4 | 5 | 6 |
| ×Ü·ÑÓÃy | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
1ÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£»
2¹À¼ÆÊ¹ÓÃÄêÏÞΪ10Äêʱ£¬³µµÄʹÓÃ×Ü·ÑÓÃÊǶàÉÙ£¿
¸½£º»Ø¹éÖ±ÏßµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½·Ö±ðΪ£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
·ÖÎö £¨1£©°ÑÊý¾Ý´úÈ빫ʽ£¬ÀûÓÃ×îС¶þ³Ë·¨Ç󻨹鷽³ÌµÄϵÊý£¬¿ÉµÃ»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©°Ñx=10´úÈë»Ø¹é·½³ÌµÃyÖµ£¬¼´ÎªÔ¤±¨±äÁ¿£®
½â´ð ½â£º£¨1£©$\overline{x}$=4£¬$\overline{y}$=5£¬$\sum_{i=1}^{5}$xi2=90£¬$\sum_{i=1}^{5}$xiyi=112.3£¬
¡à$\stackrel{¡Ä}{b}$=$\frac{112.3-5¡Á4¡Á5}{90-5¡Á{4}^{2}}$=1.23£»$\stackrel{¡Ä}{a}$£»a=5-1.23¡Á4=0.08£®
¡àÏßÐԻعéÖ±Ïß·½³ÌÊÇ$\stackrel{¡Ä}{y}$=1.23x+0.08£¬
£¨2£©µ±x=10£¨Ä꣩ʱ£¬$\stackrel{¡Ä}{y}$=1.23¡Á10+0.08=12.38 £¨ÍòÔª£©£¬
¼´¹À¼ÆÊ¹ÓÃ10Äêʱ£¬Ö§³ö×Ü·ÑÓÃÊÇ12.38ÍòÔª£®
µãÆÀ ±¾Ì⿼²éÁËÏßÐԻعéÖ±Ïß·½³ÌµÄÇ󷨼°ÀûÓûع鷽³Ì¹À¼ÆÔ¤±¨±äÁ¿£¬½â´ð´ËÀàÎÊÌâµÄ¹Ø¼üÊÇÀûÓù«Ê½Ç󻨹鷽³ÌµÄϵÊý£¬¼ÆËãҪϸÐÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÒÑÖªÔ²M£ºx2+y2-2ay=0£¨a£¾0£©½ØÖ±Ïßx+y=0ËùµÃÏ߶εij¤¶ÈÊÇ2£¬ÔòÔ²MÓëÔ²N£º£¨x-1£©2+£¨y-1£©2=1µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
| A£® | ÄÚÇÐ | B£® | Ïཻ | C£® | ÍâÇÐ | D£® | ÏàÀë |
7£®£¨x-1£©£¨$\frac{1}{x}$+x£©6µÄÕ¹¿ªÊ½ÖеÄÒ»´ÎÏîϵÊýÊÇ£¨¡¡¡¡£©
| A£® | 5 | B£® | 14 | C£® | 20 | D£® | 35 |
8£®
Èçͼ£¬¸ø³öµÄÊǼÆËãÁ¬³ËÊýÖµµÄ³ÌÐò¿òͼ£¬ÆäÖÐÅжϿòÄÚ²»ÄÜÌîÈ루¡¡¡¡£©
| A£® | i¡Ü2019£¿ | B£® | i£¼2019£¿ | C£® | i¡Ü2017£¿ | D£® | i¡Ü2018£¿ |