题目内容
8.(Ⅰ) 求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;
(Ⅱ) 学校决定从成绩在[100,120)的学生中任选2名进行座谈,求此2人的成绩都在[110,120)中的概率.
分析 (Ⅰ)根据频率分布直方图知组距为10,由频率分布直方图中小矩形面积之和为1,求出a,由此能求出成绩分别落在[100,110)与[110,120)中的学生人数.
(Ⅱ)记成绩落在[100,110)中的2人为A1,A2,成绩落在[110,120)中的3人为B1,B2,B3,由此利用列举法能求出此2人的成绩都在[110,120)中的概率.
解答 解:(Ⅰ)根据频率分布直方图知组距为10,
由(2a+3a+7a+6a+2a)×10=1,
解得$a=\frac{1}{200}=0.005$;(2分)
所以成绩落在[100,110)中的人数为2×0.005×10×20=2;(4分)
成绩落在[110,120)中的人数为3×0.005×10×20=3.(6分)
(Ⅱ)记成绩落在[100,110)中的2人为A1,A2,
成绩落在[110,120)中的3人为B1,B2,B3,
则从成绩在[100,120)的学生中任选2人的基本事件共有10个:
{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3},
其中2人的成绩都在[110,120)中的基本事件有3个:
{B1,B2},{B1,B3},{B2,B3},
所以所求概率为$P=\frac{3}{10}$.(12分)
点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
19.已知两平面α,β,两直线m,n,下列命题中正确的是( )
| A. | 若m∥α,n?α,则m∥n | B. | 若m?α,n?α,且m∥β,n∥β,则α∥β | ||
| C. | 若m⊥α,m∥n,n?β,则α⊥β | D. | 若m∥α,α∩β=n,则m∥n |
20.为了对某校高二年级学生参加社区服务次数进行估计,随机抽取1个容量为M的样本,根据样本作出了频率分布表如下:
(1)求出表中m、n的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[20,25)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.
| 分组 | 频数 | 频率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 25 | n |
| [20,25) | m | p |
| [25,30] | 2 | 0.05 |
| 合计 | M | 1 |
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[20,25)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.