题目内容

18.在△ABC中,A,B,C的对边分别为a,b,c,a=10,$b=5\sqrt{7}$,且acosC,bcosB,ccosA成等差数列,则c=(  )
A.15B.5C.3D.25

分析 先根据等差数列的性质,以及正弦定理和两角和的正弦公式求出B=60°,再根据余弦定理即可求出c的值.

解答 解、∵acosC、bcosB、ccosA成等差数列,
∴2bcosB=acosC+ccosA,
由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C)=sinB,
∵A,B,C为△ABC的内角,
∴sinB≠0,
∴cosB=$\frac{1}{2}$,
∴B=60°,
由余弦定理,可得b2=a2+c2-2accosB,a=10,$b=5\sqrt{7}$,
∴c2-10c-15=0,
解得c=15,
故选:A.

点评 本题考查了等差数列的性质,正弦定理和余弦定理,两角和的正弦公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网