题目内容
设函数f(x)=sin(2x+
).
(1)求f(
);
(2)若θ为锐角,且f(
+
)的值为
,求cos(θ+
).
| π |
| 4 |
(1)求f(
| π |
| 8 |
(2)若θ为锐角,且f(
| θ |
| 2 |
| π |
| 8 |
| 3 |
| 5 |
| π |
| 4 |
考点:两角和与差的正弦函数,三角函数的化简求值
专题:计算题,三角函数的求值
分析:(1)将
代入函数f(x)=sin(2x+
),化简即可求值.
(2)f(
+
)的值为
,由诱导公式可求sinθ、cosθ的值,从而根据两角和与差的余弦函数公式可求cos(θ+
).
| π |
| 8 |
| π |
| 4 |
(2)f(
| θ |
| 2 |
| π |
| 8 |
| 3 |
| 5 |
| π |
| 4 |
解答:
解:(1)f(
)=sin(2×
+
)=sin
=1.
(2)f(
+
)=sin[2×(
+
)+
]=sin(θ+
)=cosθ=
,
因θ为锐角,故sinθ=
.
故cos(θ+
)=cosθcos
-sinθsin
=
(cosθ-sinθ)=-
.
| π |
| 8 |
| π |
| 8 |
| π |
| 4 |
| π |
| 2 |
(2)f(
| θ |
| 2 |
| π |
| 8 |
| θ |
| 2 |
| π |
| 8 |
| π |
| 4 |
| π |
| 2 |
| 3 |
| 5 |
因θ为锐角,故sinθ=
| 4 |
| 5 |
故cos(θ+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| ||
| 10 |
点评:本题主要考察两角和与差的余弦函数公式,三角函数的化简求值,属于基础题.
练习册系列答案
相关题目