题目内容

10.若$cos(α+\frac{π}{4})=\frac{1}{3}$,$α∈(0,\frac{π}{2})$,则sinα的值为(  )
A.$\frac{{4-\sqrt{2}}}{6}$B.$\frac{{4+\sqrt{2}}}{6}$C.$\frac{7}{18}$D.$\frac{{\sqrt{2}}}{3}$

分析 由已知利用两角和的余弦函数公式可求cosα=$\frac{\sqrt{2}}{3}$+sinα,结合同角三角函数基本关系式可求2sin2α+$\frac{2\sqrt{2}}{3}$sinα-$\frac{7}{9}$=0,进而解得sinα的值.

解答 解:∵$cos(α+\frac{π}{4})=\frac{1}{3}$,$α∈(0,\frac{π}{2})$,可得:sinα>0,
∴$\frac{\sqrt{2}}{2}$cosα+$\frac{\sqrt{2}}{2}$sinα=$\frac{1}{3}$,可得:cosα=$\frac{\sqrt{2}}{3}$+sinα,
又∵sin2α+cos2α=1,可得:sin2α+($\frac{\sqrt{2}}{3}$+sinα)2=1,整理可得:2sin2α+$\frac{2\sqrt{2}}{3}$sinα-$\frac{7}{9}$=0,
∴解得:sinα=$\frac{4-\sqrt{2}}{6}$,或-$\frac{4+\sqrt{2}}{6}$(舍去).
故选:A.

点评 本题主要考查了两角和的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网