题目内容
(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.
(1)求证:CF∥平面AEB1;
(2)求证:平面AEB1⊥平面ABB1A1.
在区间上随机取一个,的值介于与之间的概率为( )
A. B. C. D.
(本题满分14分)已知定义在区间上的函数,其中常数.
(1)若函数分别在区间上单调,试求的取值范围;
(2)当时,方程有四个不相等的实根.
①证明:;
②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.
(本小题12分)已知,命题:,恒成立,命题:,直线与椭圆有公共点,求使得为真命题,为假命题的实数的取值范围.
已知,且 ,则的最小值为_____________.
(本小题满分10分)选修4-5不等式选讲
已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集.
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
(满分12分)已知,,且
(Ⅰ)用表示数量积;
(Ⅱ)求的最小值,并求出此时的夹角.
对于一切实数,当a,b,c(a≠0,a<b)变化时,所有二次函数f(x)=ax2+bx+c的函数值恒为非负实数,则的最小值是( )
A.3 B. C.2 D.
(本小题满分12分)设函数(其中为自然对数的底数,,),曲线在点处的切线方程为.
(1)求的值;
(2)若对任意,函数有且只有两个零点,求的取值范围.