题目内容
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值.
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
解 f′(x)=3x2+2(1-a)x-a(a+2).
(1)由题意得![]()
解得b=0,a=-3或1.
(2)∵曲线y=f(x)存在两条垂直于y轴的切线,
∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,
∴Δ=4(1-a)2+12a(a+2)>0,
即4a2+4a+1>0.∴a≠-
.
∴a的取值范围是![]()
练习册系列答案
相关题目