题目内容
8.(1+x)(2+x)(3+x)…(20+x)的展开式中x19的系数是210.分析 根据题意,(1+x)(2+x)(3+x)…(20+x)的展开式中x19项是19个x与一个常数项的积,由此得出x19的系数.
解答 解:根据题意,(1+x)(2+x)(3+x)…(20+x)的展开式中x19的系数是:
1+2+3+…+20=$\frac{1+20}{2}$×20=210.
故答案为:210.
点评 本题考查了求二项展开式的某项系数的应用问题,是基础题目.
练习册系列答案
相关题目
18.在平行四边形ABCD中,O是对角线的交点,$\overrightarrow{CE}$=-3$\overrightarrow{DE}$,则( )
| A. | $\overrightarrow{OE}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$ | B. | $\overrightarrow{OE}$=-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AD}$ | C. | $\overrightarrow{OE}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{4}$$\overrightarrow{AD}$ | D. | $\overrightarrow{OE}$=$\frac{1}{4}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$ |
16.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{y-x≤2}\\{x≥1}\\{y≥0}\end{array}\right.$,则$\frac{x+y}{x-1}$的最小值为( )
| A. | 2 | B. | 4 | C. | $\frac{4}{3}$ | D. | $\frac{4}{5}$ |
5.已知函数f(x)=2cos($\frac{π}{3}$x+φ)图象的一个对称中心为(2,0),且f(1)>f(3),要得到函数,f(x)的图象可将函数y=2cos$\frac{π}{3}$x的图象( )
| A. | 向左平移$\frac{1}{2}$个单位长度 | B. | 向左平移$\frac{π}{6}$个单位长度 | ||
| C. | 向右平移$\frac{1}{2}$个单位长度 | D. | 向右平移$\frac{π}{6}$个单位长度 |
3.函数f(x)=$\frac{{\sqrt{x-2}}}{{2\sqrt{x+1}}}$的定义域是( )
| A. | (-1,+∞) | B. | [2,+∞) | C. | (-∞,2] | D. | (-1,2] |