题目内容
1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b-c}{a}=\frac{sinA-sinC}{sinB+sinC}$.(I)求B;
(II)若a+c=5,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求b.
分析 (Ⅰ)根据正弦定理以及余弦定理可得,
(Ⅱ)根据三角形的面积公式和余弦定理即可求出.
解答 解:(Ⅰ)在△ABC中,由正弦定理,得$\frac{b-c}{a}$=$\frac{sinA-sinC}{sinB+sinC}$=$\frac{a-c}{b+c}$,
∴b2-c2=a2-ac,
∴a2+c2-b2=ac,
由余弦定理,得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$,
(Ⅱ)∵△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac=$\frac{3\sqrt{3}}{2}$,
∴ac=6,
由余弦定理知b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB)=25-2×6×$\frac{3}{2}$=7,
∴b=$\sqrt{7}$.
点评 本题考查了正弦定理余弦定理和三角形的面积公式,属于中档题
练习册系列答案
相关题目
12.在平面直角坐标系中,过定点M(0,-$\frac{1}{3}$) 的直线l交椭圆$\frac{x^2}{2}$+y2=1于P,Q两点,则以PQ为直径的圆恒过x轴上方的定点( )
| A. | (-1,$\frac{1}{3}$) | B. | (0,$\frac{1}{2}$) | C. | (0,1) | D. | (1,$\frac{1}{3}$) |
9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦点分别为F1,F2,渐近线为l1,l2,P位于l1在第一象限内的部分,若l2⊥PF1,l2∥PF2,则双曲线的离心率为( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{2}$ |
16.某中学为了解高一年级学生身体发育情况,对全校1400名高一年级学生按性别进行分层抽样检查,测得一组样本的身高(单位:cm)频数分布表如表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表
(I)估计该校高一女生的人数:
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.
表1:男生身高频数分布表
| 身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
| 频数 | 2 | 5 | 11 | 4 | 5 | 3 |
| 身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
| 频数 | 2 | 8 | 15 | 12 | 2 | 1 |
(II)估计该校学生身高在[165,180)的概率;
(III)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)的学生人数,求X的分布列及数学期望EX.
6.已知A(3,0),B(2,1),则向量$\overrightarrow{AB}$的单位向量的坐标是( )
| A. | (1,-1) | B. | (-1,1) | C. | $({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$ | D. | $({\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2}})$ |
10.已知a,b,c分别是△ABC的内角A,B.C所对的边,点M为△ABC的重心.若a$\overrightarrow{MA}$+b$\overrightarrow{MB}$+$\frac{\sqrt{3}}{3}$c$\overrightarrow{MC}$=0,则C=( )
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |