题目内容

9.已知抛物线y2=4x的过焦点的弦AB被焦点分成长为d1、d2的两段,那么(  )
A.d1+d2=d1•d2B.d1-d2=d1•d2C.d12+d22=d1•d2D.d12-d22=d1•d2

分析 求出抛物线的焦点F(1,0),准线x=-1,再设y=k(x-1)代入y2=4x得k2x2-2(k2+2)x+k2=0,由抛物线定义可得|AF|=x1+1,|BF|=x2+1,从而可得结论.

解答 解:抛物线的焦点F(1,0),准线x=-1,
设y=k(x-1),把它代入y2=4x得k2x2-2(k2+2)x+k2=0,
设A(x1,y1),B(x2,y2),则x1x2=1
由抛物线定义可得|AF|=x1+1,|BF|=x2+1,
∴d1+d2=(x1+1)+(x2+1)=(x1+x2)+2,d1d2=(x1+1)(x2+1)=x1x2+(x1+x2)+1=(x1+x2)+2
∴d1+d2=d1d2
故选:A.

点评 本题考查抛物线过焦点的性质,解题的关键是设出过焦点的直线方程与抛物线方程联立方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网