题目内容
Sn+an=n,Sn为数列an的前n项和,证明:
+
+
+…+
<2.
| 1 |
| 2a1 |
| 2 |
| 22a2 |
| 1 |
| 23a3 |
| 1 |
| 2nan |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知得到an=1-(
)n.从而
=
=
=
=
<
=
+
,由此利用放缩法和分组求和法能证明
+
+
+…+
<2.
| 1 |
| 2 |
| 1 |
| 2nan |
| 1 | ||
2n(1-
|
| 1 |
| 2n-1 |
| 2n+1 |
| (2n+1)(2n-1) |
| 2n+1 |
| 4n-1 |
| 2n+2 |
| 4n |
| 1 |
| 2n |
| 4 |
| 2n |
| 1 |
| 2a1 |
| 2 |
| 22a2 |
| 1 |
| 23a3 |
| 1 |
| 2nan |
解答:
解:∵Sn+an=n,
∴n≥2时,Sn-1+an-1=n-1,
两式相减得Sn-Sn-1+an-an-1=1,
∴2an-an-1=1,
∴2(an-1)-(an-1-1)=0,
∴
=
,∴数列{an-1}是以
为公比的等比数列,
又∵S1+a1=2a1=1,∴a1=
,a1-1=-
,
∴an-1=-
×(
)n-1=-(
)n,
∴an=1-(
)n.
∴
=
=
=
=
<
=
+
,
∴
+
+
+…+
=
+
+…+
<(
+
+…+
)+2(
+
+
+…+
)
=
+2×
=1-
+
×2-
×
<1+
<2.
∴
+
+
+…+
<2.
∴n≥2时,Sn-1+an-1=n-1,
两式相减得Sn-Sn-1+an-an-1=1,
∴2an-an-1=1,
∴2(an-1)-(an-1-1)=0,
∴
| an-1 |
| an-1-1 |
| 1 |
| 2 |
| 1 |
| 2 |
又∵S1+a1=2a1=1,∴a1=
| 1 |
| 2 |
| 1 |
| 2 |
∴an-1=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=1-(
| 1 |
| 2 |
∴
| 1 |
| 2nan |
| 1 | ||
2n(1-
|
| 1 |
| 2n-1 |
| 2n+1 |
| (2n+1)(2n-1) |
| 2n+1 |
| 4n-1 |
| 2n+2 |
| 4n |
| 1 |
| 2n |
| 4 |
| 2n |
∴
| 1 |
| 2a1 |
| 2 |
| 22a2 |
| 1 |
| 23a3 |
| 1 |
| 2nan |
=
| 1 |
| 2-1 |
| 1 |
| 22-1 |
| 1 |
| 2n-1 |
<(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n |
=
| ||||
1-
|
| ||||
1-
|
=1-
| 1 |
| 2n |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4n |
<1+
| 2 |
| 3 |
∴
| 1 |
| 2a1 |
| 2 |
| 22a2 |
| 1 |
| 23a3 |
| 1 |
| 2nan |
点评:本题考查不等式的证明,是中档题,解题时要认真审题,注意到放缩法、构造法和分组求和法的合理运用.
练习册系列答案
相关题目
定义max{a,b}=
,设实数x,y满足约束条件
,则z=max{4x+y,3x-y}的取值范围是( )
|
|
| A、[-8,10] |
| B、[-7,10] |
| C、[-6,8] |
| D、[-7,8] |
已知函数f(x)=axsinx-
(a>0)在(
,π)内有两个零点,则a的可能值为( )
| 3 |
| 2 |
| π |
| 2 |
| A、1 | ||
B、
| ||
C、
| ||
D、
|