ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{2}}{2}$£¬ÇÒP£¨0£¬1£©ÊÇÍÖÔ²CÉϵĵ㣬FÊÇÍÖÔ²µÄÓÒ½¹µã£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãFÇÒ²»Óë×ø±êÖáÆ½ÐеÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪM£¬OÎª×ø±êԵ㣬ֱÏßOMµÄбÂÊkOM=-$\frac{1}{2}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®
·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬Ôòb=1£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃaµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬ÇóµÃMµã×ø±ê£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÇóµÃkµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬b2=a2-c2=c2£¬
ÓÉÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬ÓÉP£¨0£¬1£©ÊÇÍÖÔ²ÉÏÒ»µã£¬
Ôòb=1£¬c2=1£¬a2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªF£¨1£¬0£©£¬ÉèÖ±ÏßABµÄ·½³Ì£ºy=k£¨x-1£©£¬£¨k¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬
$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
Ôòy1+y2=k£¨x1-1£©+k£¨x2-1£©=-$\frac{2k}{1+2{k}^{2}}$£¬x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬y0=$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{k}{1+2{k}^{2}}$£¬
ÔòM£¨$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬-$\frac{k}{1+2{k}^{2}}$£©£¬
¡àÖ±ÏßOMµÄбÂÊkOM=-$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{2k}$=-$\frac{1}{2}$£¬½âµÃ£ºk=1£¬
¡àÖ±ÏßlµÄ·½³Ì£ºx-y-1=0£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 50 | B£® | 75 | C£® | 25.5 | D£® | 37.5 |
| A£® | -1+3i | B£® | -1-3i | C£® | 1+3i | D£® | 1-3i |
| Êý¾Ý | 31£¬12£¬22£¬15£¬20£¬45£¬47£¬32£¬34£¬23£¬28 |
| A£® | 23¡¢32 | B£® | 34¡¢35 | C£® | 28¡¢32 | D£® | 28¡¢35 |
| A£® | a²»Äܱ»2017Õû³ý | B£® | b²»Äܱ»2017Õû³ý | ||
| C£® | a¡¢b¶¼²»Äܱ»2017Õû³ý | D£® | a¡¢bÖÐÖÁ¶àÓÐÒ»¸öÄܱ»2017Õû³ý |
| A£® | 81 | B£® | 243 | C£® | 729 | D£® | 2187 |