题目内容
6.函数f(x)=x3-3x的单调递减区间为( )| A. | (-∞,1) | B. | (1,+∞) | C. | (-1,1) | D. | (-∞,+∞) |
分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.
解答 解:f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)<0,即(x+1)(x-1)<0,
解得:-1<x<1,
故f(x)在(-1,1)递减,
故选:C.
点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.
练习册系列答案
相关题目
17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$对于任意的x∈(1,+∞)恒成立,则( )
| A. | a的最小值为-3 | B. | a的最小值为-4 | C. | a的最大值为2 | D. | a的最大值为4 |
18.已知点A(0,-1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$+1 | D. | $\sqrt{3}$+1 |
15.命题甲:f(x)在区间(a,b)内递增;命题乙:对任意x∈(a,b),有f'(x)>0.则甲是乙的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
14.已知函数f(x)=|sinx|•cosx,则下列说法正确的是( )
| A. | f(x)的图象关于直线x=$\frac{π}{2}$对称 | B. | f(x)在区间上[$\frac{π}{4}$,$\frac{3π}{4}$]单调递减 | ||
| C. | 若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z) | D. | f(x)的周期为π |