题目内容
已知等差数列{an}的首项为2,公差为1,符号[x]表示不超过实数x的最大整数,记bn=[log3(an-1)],Sn为数列{bn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求S3n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求S3n.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)利用等差数列的通项公式和题意即可得出an;
(Ⅱ)由(Ⅰ)知an=n+1可得bn=[log3n],当3k≤n<3k+1时,[log3n]=k,k∈N,先表示出S3n,利用等比数列的前n项和公式与“错位相减法”即可得出.
(Ⅱ)由(Ⅰ)知an=n+1可得bn=[log3n],当3k≤n<3k+1时,[log3n]=k,k∈N,先表示出S3n,利用等比数列的前n项和公式与“错位相减法”即可得出.
解答:
解:(Ⅰ)因为等差数列{an}的首项为2,公差为1,
所以an=2+(n-1)×1=n+1,
(Ⅱ)由(Ⅰ)得,bn=[log3(an-1)]=[log3n],
当3k≤n<3k+1时,[log3n]=k,k∈N,
所以S3n=[log31]+[log32]+[log33]+[log34]]+…+[[log38]+]+[log39]+[log310]+…+[log33n]
=0+0+1×6+2×18+3×54+…+(n-1)×2•3n-1+n
=0+0+1×2×3+2×2×32+3×2×33+…+(n-1)×2•3n-1+n,
设s=1×2×3+2×2×32+3×2×33+…+(n-1)×2•3n-1,①
3s=1×2×32+2×2×33+3×2×34+…+(n-1)×2•3n,②
①-②得,-2s=6+2(32+33+34+…+3n-1)-(n-1)×2•3n
=6+2×
-(n-1)×2•3n=-3+(-2n+3)•3n
则s=
[3+(2n-3)•3n],
所以S3n=
[3+(2n-3)•3n]+n.
所以an=2+(n-1)×1=n+1,
(Ⅱ)由(Ⅰ)得,bn=[log3(an-1)]=[log3n],
当3k≤n<3k+1时,[log3n]=k,k∈N,
所以S3n=[log31]+[log32]+[log33]+[log34]]+…+[[log38]+]+[log39]+[log310]+…+[log33n]
=0+0+1×6+2×18+3×54+…+(n-1)×2•3n-1+n
=0+0+1×2×3+2×2×32+3×2×33+…+(n-1)×2•3n-1+n,
设s=1×2×3+2×2×32+3×2×33+…+(n-1)×2•3n-1,①
3s=1×2×32+2×2×33+3×2×34+…+(n-1)×2•3n,②
①-②得,-2s=6+2(32+33+34+…+3n-1)-(n-1)×2•3n
=6+2×
| 9(1-3n-2) |
| 1-3 |
则s=
| 1 |
| 2 |
所以S3n=
| 1 |
| 2 |
点评:本题考查等差数列的通项公式、等比数列的前n项和公式,错位相减法求数列的前n项和,新定义,对数性质,考查了猜想归纳、分析问题和解决问题的能力,考差了推理能力和计算能力,属于难题.
练习册系列答案
相关题目
过圆x2+y2-6x-8y+21=0上一动点P作圆x2+y2=4的两条切线,切点分别为A、B,设向量
、
的夹角为θ,则cosθ的取值范围为( )
| PA |
| PB |
A、[
| ||||||||
B、[
| ||||||||
C、[
| ||||||||
D、[
|