题目内容

设点P为函数f(x)=
1
2
x2+2ax与g(x)=3a2lnx+2b(a>0)图象的公共点,以P为切点可作直线l与两曲线都相切,则实数b的最大值为
 
考点:二次函数的性质,对数函数的图像与性质,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用两直线重合列出等式即可求得b值,然后利用导数来研究b的最大值,研究此函数的最值问题,先求出函数的极值,结合函数的单调性,最后确定出最大值与最小值即得.
解答: 解:设y=f(x)与y=g(x)(x>0)在公共点P(x0,y0)处的切线相同、
f′(x)=x+2a,g′(x)=
3a2
x

由题意f(x0)=g(x0),f′(x0)=g′(x0),
1
2
x02+2ax0=3a2lnx0+2b,x0+2a=
3a2
x0

由x0+2a=x0+2a=
3a2
x0
得x0=a或x0=-3a(舍去),
即有2b=
1
2
a2+2a2-3a2lna=
5
2
a2-3a2lna.
令h(t)=
5
2
t2-3t2lnt(t>0),则h′(t)=2t(1-3lnt)、
于是当t(1-3lnt)>0,即0<t<e
1
3
时,h′(t)>0;
当t(1-3lnt)<0,即t>e
1
3
时,h′(t)<0.
故h(t)在(0,e
1
3
)为增函数,在(e
1
3
,+∞)为减函数,
于是h(t)在(0,+∞)的最大值为h(e
1
3
)=
3
2
e
2
3

故b的最大值为
3
4
e
2
3

故答案为:
3
4
e
2
3
点评:本小题主要考查利用导数研究曲线上某点切线方程、不等式的解法等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网