题目内容

19.已知复数z满足(2+i)z=2-i(i为虚数单位),则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.

解答 解:由(2+i)z=2-i,得$z=\frac{2-i}{2+i}=\frac{(2-i)^{2}}{(2+i)(2-i)}=\frac{3-4i}{5}=\frac{3}{5}-\frac{4}{5}i$,
∴z在复平面内对应的点的坐标为($\frac{3}{5},-\frac{4}{5}$),位于第四象限.
故悬案:D.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网