题目内容
我们将侧棱和底面边统称为棱,则三棱锥有4个面,6条棱,4个顶点,如果面数记作F,棱数记作E,顶点数记作V,那么F,E,V之间有什么关系?再用三棱柱,四棱台检验你得到的关系式,你知道这是个什么公式?
考点:归纳推理
专题:计算题,推理和证明
分析:通过列举正方体、三棱柱、三棱锥的面数F、顶点数V和棱数E,得到规律:V+F-E=2,进而发现此公式对任意凸多面体都成立,由此得到本题的答案.
解答:
解:凸多面体的面数为F、顶点数为V和棱数为E,举例如下
①正方体:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱锥:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:V+F-E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:V+F-E=2
这个是欧拉式.
①正方体:F=6,V=8,E=12,得V+F-E=8+6-12=2;
②三棱柱:F=5,V=6,E=9,得V+F-E=5+6-9=2;
③三棱锥:F=4,V=4,E=6,得V+F-E=4+4-6=2.
根据以上几个例子,猜想:凸多面体的面数F、顶点数V和棱数E满足如下关系:V+F-E=2
再通过举四棱锥、六棱柱、…等等,发现上述公式都成立.
因此归纳出一般结论:V+F-E=2
这个是欧拉式.
点评:本题由几个特殊多面体,观察它们的顶点数、面数和棱数,归纳出一般结论,得到欧拉公式,着重考查了归纳推理和凸多面体的性质等知识,属于基础题.
练习册系列答案
相关题目