题目内容
设等差数列{an}的前n项和是Sn,且a1=10,a2=9,那么下列不等式中不成立的是( )
A.a10+a11>0 B.S21<0
C.a11+a12<0 D.n=10时,Sn最大
D
已知向量=(cos x,sin x),=,定义函数f(x)=·.
(1)求函数f(x)的单调递增区间;
(2)当⊥时,求锐角x的值.
f(x)对任意x∈R都有f(x)+f(1-x)=.
(1)求f和f+f (n∈N)的值;
(2)数列{an}满足:an=f(0)+f+f+…+f+f(1),数列{an}是等差数列吗?请给予证明;
(3)令bn=,Tn=b+b+b+…+b,Sn=32-.试比较Tn与Sn的大小.
在数列{an}中,若an+1=,a1=1,则a6=( )
A.13 B. C.11 D.
已知函数f(x)=x2+x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,则数列{an}的通项公式an=__________.
数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n项和Sn>1 020,那么n的最小值是( )
A.7 B.8 C.9 D.10
数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=,求数列{cn}的前n项和Tn.
直线y=x+b与曲线y=-x+lnx相切,则b的值为( )
A.-2 B.-1
C.- D.1
若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )
A.-1 B.0
C.1 D.2