题目内容

18.某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.

分析 (1)求出文学院至少有一名学生入选代表队的对立事件的概率,然后求解概率即可;
(2)求出X表示参赛的男生人数的可能值,求出概率,得到X的分布列,然后求解数学期望.

解答 解:(1)由题意,参加集训的男、女学生共有6人,参赛学生全从理学院中抽出(等价于文学院中没有学生入选代表队)的概率为:$\frac{{C}_{3}^{3}{C}_{4}^{3}}{{C}_{6}^{3}{C}_{6}^{3}}$=$\frac{1}{100}$,因此文学院至少有一名学生入选代表队的概率为:1-$\frac{1}{100}$=$\frac{99}{100}$;
(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X表示参赛的男生人数,
则X的可能取值为:1,2,3,
P(X=1)=$\frac{{C}_{3}^{1}{C}_{3}^{3}}{{C}_{6}^{4}}$=$\frac{1}{5}$,P(X=2)=$\frac{{C}_{3}^{2}{C}_{3}^{2}}{{C}_{6}^{4}}$=$\frac{3}{5}$,P(X=3)=$\frac{{C}_{3}^{1}{C}_{3}^{3}}{{C}_{6}^{4}}$=$\frac{1}{5}$.
X的分布列:

 X 1 2 3
 P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
和数学期望EX=1×$\frac{1}{5}$+2×$\frac{3}{5}$+3×$\frac{1}{5}$=2.

点评 本题考查离散型随机变量的分布列,期望的求法,考查古典概型概率的求法,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网