题目内容
8.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且$6{S_n}=a_n^2+3{a_n}+2$(n∈N*).(1)求{an}的通项公式;
(2)设数列{bn}满足${b_n}=\left\{{\begin{array}{l}{{a_n},n为偶数}\\{{2^{a_n}},n为奇数}\end{array}}\right.$,Tn为数列{bn}的前n项和,求Tn;
(3)设${C_n}=\frac{{{b_{n+1}}}}{b_n},(n为正整数)$,问是否存在正整数N,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数N的取值范围;若不存在,请说明理由.
分析 (1)n=1时,可解得a1=2,n≥2时,化简可得(an+an-1)(an-an-1-3)=0,从而可得an-an-1=3,从而求通项公式;
(2)化简${b_n}=\left\{{\begin{array}{l}{3n-1,n为偶数}\\{{2^{3n-1}},n为奇数}\end{array}}\right.$,Tn=b1+b2+…+bn,从而分n为偶数还是奇数讨论,从而求得;
(3)化简${C_n}=\left\{{\begin{array}{l}{\frac{{{2^{{a_{n+1}}}}}}{a_n}=\frac{{{2^{3n+2}}}}{3n-1},n为偶数}\\{\frac{{{a_{n+1}}}}{{{2^{a_n}}}}=\frac{3n+2}{{{2^{3n-1}}}},n为奇数}\end{array}}\right.$,从而可判断当n为奇数时,Cn+2<Cn,从而判断.
解答 解:(1)n=1时,$6{a_1}={a_1}^2+3{a_1}+2$,且a1>1,
解得a1=2,
n≥2时,$6{S_n}={a_n}^2+3{a_n}+2$,$6{S_{n-1}}={a_{n-1}}^2+3{a_{n-1}}+2$,
两式相减得:$6{a_n}={a_n}^2-{a_{n-1}}^2+3{a_n}-3{a_{n-1}}$,
即(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,an=3n-1.
(2)${b_n}=\left\{{\begin{array}{l}{3n-1,n为偶数}\\{{2^{3n-1}},n为奇数}\end{array}}\right.$,Tn=b1+b2+…+bn.
当n为偶数时,Tn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=$\frac{{4(1-{8^n})}}{1-64}+\frac{{\frac{n}{2}(5+3n-1)}}{2}=\frac{4}{63}({8^n}-1)+\frac{n(3n+4)}{4}$,
当n为奇数时,Tn=(b1+b3+…+bn)+(b2+b4+…+bn-1)
=$\frac{{4(1-{8^{n+1}})}}{1-64}+\frac{{\frac{n-1}{2}(5+3n-4)}}{2}=\frac{4}{63}({8^{n+1}}-1)+\frac{(n-1)(3n+1)}{4}$.
∴${T_n}=\left\{{\begin{array}{l}{\frac{4}{63}({8^n}-1)+\frac{n(3n+4)}{4},\;\;\;\;\;\;\;\;\;\;\;n为偶数}\\{\frac{4}{63}({8^{n+1}}-1)+\frac{(n-1)(3n+1)}{4},n为奇数}\end{array}}\right.$;
(3)${C_n}=\left\{{\begin{array}{l}{\frac{{{2^{{a_{n+1}}}}}}{a_n}=\frac{{{2^{3n+2}}}}{3n-1},n为偶数}\\{\frac{{{a_{n+1}}}}{{{2^{a_n}}}}=\frac{3n+2}{{{2^{3n-1}}}},n为奇数}\end{array}}\right.$,
当n为奇数时,
${C_{n+2}}-{C_n}=\frac{3n+8}{{{2^{3n+5}}}}-\frac{3n+2}{{{2^{3n-1}}}}=\frac{1}{{{2^{3n+5}}}}[3n+8-64(3n+2)]<0$,
∴Cn+2<Cn,
故{Cn}递减,${C_n}≤{C_1}=\frac{5}{4}<2015$,
因此不存在满足条件的正整数N.
点评 本题考查了等差数列的性质的应用及计算,考查了分类讨论的思想应用及分组求和的应用.
| A. | $y=±\frac{{\sqrt{5}}}{2}x$ | B. | $y=±\frac{{2\sqrt{5}}}{5}x$ | C. | $y=±\frac{{\sqrt{5}}}{3}x$ | D. | $y=±\frac{{3\sqrt{5}}}{5}x$ |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
| A. | l | B. | K | C. | 3 | D. | y-1=k(x-2) |
| A. | ( 4,2,2) | B. | (2,-1,2) | C. | (2,1,1) | D. | 4,-1,2) |