题目内容

在三棱锥P-ABC中,PA、PB、PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的球面面积是
 
考点:球的体积和表面积
专题:计算题,高考数学专题
分析:以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.
解答: 解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图
则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为2
3

∴球直径为2
3
,半径R=
3

因此,三棱锥P-ABC外接球的表面积是4πR2=4π×(
3
2=12π
故答案为:12π.
点评:本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网