题目内容

求适合下列条件的x的集合:
(1)sinx=-1;
(2)cosx=0;
(3)tan x=-
5

(4)cot x=0.8594.
考点:三角函数线,终边相同的角
专题:函数的性质及应用
分析:运用终边相同的角得出(1)x=2kπ-
π
2
,k∈z,(2)x=2kπ-
π
2
,k∈z,(3)x=kπ+arctan(-
5
),k∈z,(4)x=kπ+arccot(0.8594),k∈z,再写出集合即可.
解答: 解:(1)∵sinx=-1;
x=2kπ-
π
2
,k∈z,
∴x的集合:{x|x=2kπ-
π
2
,k∈z}
(2)∵cosx=0;
∴x=kπ+
π
2
,k∈z,
∴x的集合:{x|x=kπ+
π
2
,k∈z}
(3)∵tanx=-
5

∴x=kπ+arctan(-
5
),k∈z,
∴x的集合:{x|x=kπ+arctan(-
5
),k∈z}
(4)∵cotx=0.8594.
∴x=kπ+arccot(0.8594),k∈z,
∴x的集合:{x|x=kπ+arccot(0.8594),k∈z}
点评:本题考查了根据三角函数值,求解角的大小,运用终边相同的角解决问题,属于中档题,运用反三角函数表示.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网