题目内容
20.过定点P(1,2)的直线l交双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$于A,B两点,线段AB的中点坐标为(2,4),双曲线的左顶点到右焦点的距离为$\sqrt{5}+1$.求曲线C的方程.分析 设A(x1,y1),B(x2,y2),代入双曲线的方程,运用作差法和中点坐标公式、直线的斜率公式,可得b=2a,再由a+c=1+$\sqrt{5}$,解方程可得a,b,进而得到双曲线的方程.
解答 解:设A(x1,y1),B(x2,y2),
则$\left\{\begin{array}{l}\frac{{{x_1}^2}}{a^2}-\frac{{{y_1}^2}}{b^2}=1\\ \frac{{{x_2}^2}}{a^2}-\frac{{{y_2}^2}}{b^2}=1\end{array}\right.$,
相减得:$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{({{x_1}+{x_2}}){b^2}}}{{({{y_1}+{y_2}}){a^2}}}$,
由中点坐标公式可得x1+x2=4,y1+y2=8,
且直线l的斜率为k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4-2}{2-1}$=2,
即有$2=\frac{{4{b^2}}}{{8{a^2}}}$,得b2=4a2.
又$a+c=\sqrt{5}+1$且a2+b2=c2,
解得a2=1,b2=4,
故双曲线的方程为:${x^2}-\frac{y^2}{4}=1$.
点评 本题考查双曲线的方程的求法,注意运用点差法和中点坐标公式、直线的斜率公式,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
12.
如图的程序框图的功能是:给出以下十个数:15,19,80,53,95,73,58,27,60,39,把大于60的数找出来,则框图中的①②应分别填入的是( )
| A. | x>60?,i=i+1 | B. | x<60?,i=i+1 | C. | x>60?,i=i-1 | D. | x<60?,i=i-1 |
9.等腰直角三角形ABC中,A=90°,A,B在双曲线E的同一支上,且线段AB通过双曲线的一个焦点,C为双曲线E的另一个焦点,则该双曲线的离心率为( )
| A. | $\sqrt{4-2\sqrt{2}}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | $\sqrt{4+2\sqrt{2}}$ | D. | $\sqrt{5+2\sqrt{2}}$ |
10.执行如图所示的程序框图,若输入x=1,则输出y的值是( )

| A. | 7 | B. | 15 | C. | 23 | D. | 31 |