ÌâÄ¿ÄÚÈÝ
4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2sint\\ y=2cost\end{array}\right.£¬£¨tΪ²ÎÊý£©$£¬ÔÚÒÔÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢µÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=2\sqrt{2}$£¬A£¨2£¬0£©£¨¢ñ£©ÇóÔ²CµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© APÊÇÔ²CÉ϶¯ÏÒ£¬ÇóAPÖеãMµ½l¾àÀëµÄ×îСֵ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬ÇóÔ²CµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£© ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬ÔòM£¨cos¦Á+1£¬sin¦Á£©£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬¼´¿ÉÇóÏß¶ÎAPµÄÖеãMµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
½â´ð ½â£º£¨¢ñ£©ÏûÈ¥²ÎÊýµÃ£¬Ô²CµÄÆÕͨ·½³ÌµÃx2+y2=4£® Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©=2\sqrt{2}$£¬Ö±½Ç×ø±ê·½³ÌΪx+y-4=0£»
£¨¢ò£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬ÔòM£¨cos¦Á+1£¬sin¦Á£©£¬
¡àd=$\frac{|cos¦Á+sin¦Á-3|}{\sqrt{2}}$=$\frac{|\sqrt{2}sin£¨¦Á+45¡ã£©-3|}{\sqrt{2}}$£¬
¡à×îСֵÊÇ$\frac{3-\sqrt{2}}{\sqrt{2}}$=$\frac{3\sqrt{2}-2}{2}$£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢ÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌµÄת»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®Ö±Ïß3x+4y-2=0ºÍÖ±Ïß6x+8y+1=0µÄ¾àÀëÊÇ£¨¡¡¡¡£©
| A£® | $\frac{3}{5}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{3}{10}$ | D£® | $\frac{1}{5}$ |
16£®
Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=BC=2$\sqrt{2}£¬C{C_1}$=4£¬¡ÏABC=90¡ã£¬E£¬F·Ö±ðΪAA1£¬C1B1µÄÖÐµã£¬ÑØÀâÖùµÄ±íÃæ´ÓµãEµ½µãFµÄ×î¶Ì·¾¶µÄ³¤¶ÈΪ£¨¡¡¡¡£©
| A£® | $\sqrt{14+4\sqrt{2}}$ | B£® | $\sqrt{22}$ | C£® | $3\sqrt{2}$ | D£® | $2\sqrt{3}$ |
13£®ÒÑÖª$f£¨x£©=3sin£¨{¦Øx+\frac{¦Ð}{6}}£©£¨{¦Ø£¾0}£©$£¬Èôf£¨x£©Í¼ÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»ºóͼÏóÓëy=3cos¦ØxͼÏóÖØºÏ£®
£¨1£©Ç󦨵Ä×îСֵ£»
£¨2£©ÔÚÌõ¼þ£¨1£©Ï½«Ï±íÊý¾Ý²¹³äÍêÕû£¬²¢Óá°Îåµã·¨¡±×÷³öf£¨x£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó£®
£¨1£©Ç󦨵Ä×îСֵ£»
£¨2£©ÔÚÌõ¼þ£¨1£©Ï½«Ï±íÊý¾Ý²¹³äÍêÕû£¬²¢Óá°Îåµã·¨¡±×÷³öf£¨x£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏó£®
| $¦Øx+\frac{¦Ð}{6}$ | 0 | $\frac{¦Ð}{2}$ | ¦Ð | $\frac{3¦Ð}{2}$ | 2¦Ð |
| x | |||||
| f£¨x£© |