题目内容
19.在平面直角坐标系xOy中,已知点A(2,0),直线l:x+y-5=0,点B(x,y)是圆C:x2+2x+y2-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D,E,则线段DE的最大值是( )| A. | $\sqrt{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{5\sqrt{2}}}{2}$ |
分析 由题意作出图象,结合题意可知当直线为AD时会使得要求的距离最大,然后把问题转化为点C(-1,0)到直线x-y-2=0的距离,即可求解.
解答
解:圆C:x2+2x+y2-1=0,即(x+1)2+y2=2.
如图,过点B作直线AD的垂线,交AD于点F,则DE=BF,所以此问题转化为求圆上的点B到直线AD的距离的最大值,即圆心到直线x-y-2=0的距离加半径.
易知直线AD的方程是x-y-2=0,点C(-1,0)到直线x-y-2=0的距离是$\frac{{|{-1-2}|}}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$,
所以DE的最大值是$\frac{{3\sqrt{2}}}{2}$+$\sqrt{2}$=$\frac{{5\sqrt{2}}}{2}$.
故选D.
点评 本题为距离的最值的求解,涉及直线与圆的位置关系,点到直线的距离公式以及平行线间的距离,属中档题.
练习册系列答案
相关题目
11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系( )
参考数据公式:①独立性检验临界值表
②独立性检验随机变量K2的值的计算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
参考数据公式:①独立性检验临界值表
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 015. | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6356. | 7.879 | 10.828 |
| A. | 99.9% | B. | 99.5% | C. | 97.5% | D. | 95% |