题目内容

11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
 序号 1 2 3 4 5 6 7 8 9 10 1112 13  14 1516  17 1819 20 
 数学成绩 9575  80 94 92 65 67 84 98 7167 93  64 78 77 90 57 83 7283 
 物理成绩 90 63 7287  91 71 58 82 93 81 77 82 48 85 69 91 6184  7886 
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的学生成绩与物理成绩有关系(  )
参考数据公式:①独立性检验临界值表
 P(K2≥k0 0.50 0.40 0.25 015. 0.10 0.05 0.0250.010 0.005  0001
 k0 0.4550.708  1.323 2.072 2.706 3.841 5.024 6356. 7.879 10.828
②独立性检验随机变量K2的值的计算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
A.99.9%B.99.5%C.97.5%D.95%

分析 根据题意,列出2×2列联表,求出观测值K2,根据观测值对应的数值得出结论.

解答 解:根据题意,列出2×2列联表,如下;

物理优秀物理不优秀合计
数学优秀516
数学不优秀21214
合计71320
则K2=$\frac{20×(5×12-1×2)^{2}}{6×7×14×13}$=8.8017>7.879,
因为观测值对应的数值为0.005,
所以有99.5%的把握认为学生的数学成绩与物理成绩之间有关系.
故选:B

点评 本题考查了列出2×2列联表以及独立性检验的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网