题目内容
10.平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,$\overrightarrow a=(-1,1)$,$\overrightarrow b=(2,3)$,$\overrightarrow c=(-2,k)$,若$\overrightarrow a+\overrightarrow b$与$\overrightarrow c$平行,则实数k=-8.分析 利用向量共线定理即可得出.
解答 解:$\overrightarrow a+\overrightarrow b$=(1,4),
∵$\overrightarrow a+\overrightarrow b$与$\overrightarrow c$平行,∴k+8=0.
解得k=-8.
故答案为:-8.
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
20.已知集合A={x|(5x+1)(2-x)<0},B={x|x<4},则A∩B等于( )
| A. | (-∞,4) | B. | (-$\frac{1}{5}$,2) | C. | (2,4) | D. | (-∞,-$\frac{1}{5}$)∪(2,4) |
5.3名同学分别从5个风景点中选择一处游览,不同的选法种数是( )
| A. | 10 | B. | 60 | C. | 125 | D. | 243 |
2.不等式|x+1|>3 的解集是( )
| A. | {x|x<-4或x>2} | B. | {x|-4<x<2} | C. | {x|x<-4或x≥2} | D. | {x|-4≤x<2} |
20.某连锁经营公司所属个零售店某月的销售额和利润额资料如表:
(1)用最小二乘法计算利润额对销售额y的回归直线方程;
(2)当销售额为4(千万元)时,估计利润额的大小.
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$.
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润率y(千万元) | 2 | 3 | 3 | 4 | 5 |
(2)当销售额为4(千万元)时,估计利润额的大小.
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$.