题目内容
5.(1)求证:NA1∥CM;
(2)求证:平面A1MCN⊥平面A1BD1;
(3)求直线A1B和平面A1MCN所成角.
分析 (1)以D为原点,建立空间直角坐标系D-xyz,求出$\overrightarrow{N{A}_{1}}$=($\frac{\sqrt{2}}{2}$,-1,0),$\overrightarrow{CM}$=($\frac{\sqrt{2}}{2}$,-1,0),可得$\overrightarrow{N{A}_{1}}$=$\overrightarrow{CM}$,即可证明NA1∥CM;
(2)$\overrightarrow{{D}_{1}B}$•$\overrightarrow{MN}$=0+1-1=0,$\overrightarrow{{D}_{1}B}$•$\overrightarrow{CM}$=0,即可证明D1B⊥平面A1MCN,从而平面A1MCN⊥平面A1BD1.
(3)由(2)得B到平面A1MCN的距离为d=$\frac{B{D}_{1}}{2}$=1,A1B=$\sqrt{2}$,即可求直线A1B和平面A1MCN所成角.
解答
证明:(1)以D为原点,建立空间直角坐标系D-xyz,则B($\sqrt{2}$,1,0),A($\sqrt{2}$,0,1),D1(0,0,1),C(0,1,0),M($\frac{\sqrt{2}}{2}$,0,0),N($\frac{\sqrt{2}}{2}$,1,1),
∴$\overrightarrow{N{A}_{1}}$=($\frac{\sqrt{2}}{2}$,-1,0),$\overrightarrow{CM}$=($\frac{\sqrt{2}}{2}$,-1,0),
∴$\overrightarrow{N{A}_{1}}$=$\overrightarrow{CM}$,
∴NA1∥CM;
(2)∵$\overrightarrow{{D}_{1}B}$=($\frac{\sqrt{2}}{2}$,1,-1),$\overrightarrow{MN}$=(0,1,1),$\overrightarrow{CM}$=($\frac{\sqrt{2}}{2}$,-1,0),
∴$\overrightarrow{{D}_{1}B}$•$\overrightarrow{MN}$=0+1-1=0,$\overrightarrow{{D}_{1}B}$•$\overrightarrow{CM}$=0,
∴D1B⊥MN,D1B⊥CM,
又MN∩CM=M,
∴D1B⊥平面A1MCN,又D1B?平面A1BD1,
∴平面A1MCN⊥平面A1BD1.
(3)由(2)得B到平面A1MCN的距离为d=$\frac{B{D}_{1}}{2}$=1,A1B=$\sqrt{2}$,
∴直线A1B和平面A1MCN所成角的正弦值为$\frac{d}{{A}_{1}B}$=$\frac{\sqrt{2}}{2}$,
∴直线A1B和平面A1MCN所成角为$\frac{π}{4}$.
点评 本题考查平面与平面垂直的判定,考查空间向量的运用,正确求出向量的坐标是关键.
| A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{3}$ |
| A. | 20 | B. | 25 | C. | 45 | D. | 75 |
| 上春晚次数x(单位:次) | 1 | 2 | 4 | 6 | 8 |
| 粉丝数量y(单位:万人) | 5 | 10 | 20 | 40 | 80 |
(2)试根据此方程预测该演员上春晚10次时的粉丝数;
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x.
| A. | 动物和植物的机体都是细胞组成的;植物细胞中有细胞核,所以动物细胞中也有细胞核.此推理是归纳推理 | |
| B. | “由圆的性质推出球的有关性质”是类比推理 | |
| C. | 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则可得到a10+b10=122 | |
| D. | 函数f(x)是可导函数,已知f′(a)=0则a为f(x)的极值点 |
| A. | $[{\sqrt{2},\sqrt{6}}]$ | B. | $[{\sqrt{6},2\sqrt{2}}]$ | C. | $[{\sqrt{6,}2\sqrt{3}}]$ | D. | $[{\sqrt{6,}3}]$ |