题目内容
6.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,结论的否定是三角形的三个内角都大于60°.分析 找到“三角形的内角中至少有一个不小于60°”的对立事件,由此能求出结果.
解答 解:根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.
故答案为:三角形的三个内角都大于60°.
点评 本题考查反证法的应用,是基础题,解题时要认真审题,注意反证法性质的合理运用.
练习册系列答案
相关题目
16.若a,b∈R,且ab>0,则$\frac{b}{a}$+$\frac{a}{b}$的最小值是( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
17.
如图,Rt△ABC中,P是斜边BC上一点,且满足:$\overrightarrow{BP}=\frac{1}{2}\overrightarrow{PC}$,点M,N在过点P的直线上,若$\overrightarrow{AM}=λ\overrightarrow{AB},\overrightarrow{AN}=μ\overrightarrow{AC}$,(λ,μ>0),则λ+2μ的最小值为( )
| A. | 2 | B. | $\frac{8}{3}$ | C. | 3 | D. | $\frac{10}{3}$ |
14.
如图,已知点D为△ABC的边BC上一点,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N+)为边AC上的点,满足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1,$\overrightarrow{{E}_{n}B}$=(4an+3)$\overrightarrow{{E}_{n}D}$,其中实数列{an}中an>0,a1=1,则{an}的通项公式为( )
| A. | 3•2n-1-2 | B. | 2n-1 | C. | 4n-2 | D. | 2•4n-1-1 |
1.曲线y=-ln(2x+1)+2在点(0,2)处的切线与直线y=0和y=2x围成的三角形的面积为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
15.在下列函数中,最小值为2的是( )
| A. | y=2x+2-x | B. | y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$) | ||
| C. | y=x+$\frac{1}{x}$ | D. | y=log3x+$\frac{1}{lo{g}_{3}x}$(1<x<3) |
16.设i是虚数单位,则复数z=$\frac{1+3i}{1-2i}$的共轭复数$\overline{z}$在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |