题目内容
双曲线
-
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且
•
=0,则此双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| AB |
| BF |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先利用
•
=0,推导出∠ABF=90°,再由射影定理得b2=ca,由此能求出该双曲线的离心率.
| AB |
| BF |
解答:
解:∵
•
=0,∴∠ABF=90°,
由射影定理得OB2=OF×OA,
∴b2=ca,
又∵c2=a2+b2,
∴c2=a2+ca,
∴a2+ca-c2=0,
∴1+e-e2=0,
解得e=
或e=
(舍),
故选:A.
| AB |
| BF |
由射影定理得OB2=OF×OA,
∴b2=ca,
又∵c2=a2+b2,
∴c2=a2+ca,
∴a2+ca-c2=0,
∴1+e-e2=0,
解得e=
1+
| ||
| 2 |
1-
| ||
| 2 |
故选:A.
点评:本题考查双曲线的离心率的求法,涉及到双曲线性质、向量、射影定理等知识点,解题时要注意函数与方程思想的合理运用.
练习册系列答案
相关题目
等比数列的前10项和,前20项和,前30项的和分别为S,T,R,则( )
| A、S2+T2=S(T+R) |
| B、T2=SR |
| C、(S+T)-R=T2 |
| D、S+T=R |
已知函数f(x)=
+lnx,则有( )
| x |
| A、f(2)<f(e)<f(3) |
| B、f(e)<f(2)<f(3) |
| C、f(3)<f(e)<f(2) |
| D、f(e)<f(3)<f(2) |
已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a,b,c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量ξ=|a-b|的取值,则ξ的数学期望E(ξ)=( )
A、
| ||
B、
| ||
C、
| ||
D、
|
| A、2:1 | B、1:1 |
| C、1:2 | D、以上结论都不对 |
命题“若∠C=90°,则△ABC是直角三角形”它的逆命题是( )命题.
| A、真 | B、假 | C、不确定 | D、D、 |
正三棱锥底面边长为3,侧棱与底面成60°角,则正三棱锥外接球面积为( )
| A、4π | ||
B、4
| ||
| C、16π | ||
D、16
|