题目内容
已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a,b,c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量ξ=|a-b|的取值,则ξ的数学期望E(ξ)=( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:由题意知|a-b|可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的数学期望.
解答:
解:∵抛物线对称轴在y轴左侧,∴b与a同符号,且a≠0,b≠0,
当a=-3时,b可取-1,-2,-3,|a-b|对应的值为:2,1,0,
当a=-2时,b可取-1,-2,-3,|a-b|对应的值为:1,0,1,
当a=-1时,b可取-1,-2,-3,|a-b|对应的值为:0,1,2,
当a=1时,b可取1,2,3,|a-b|对应的值为:0,1,2,
当a=2时,b可取1,2,3,|a-b|对应的值为:1,0,1,
当a=3时,b可取1,2,3,|a-b|对应的值为:2,1,0,
∴ξ的可能取值为0,1,2,
P(ξ=0)=
,P(ξ=1)=
,P(ξ=2)=
,
∴E(ξ)=0
+1×
+2×
=
.
故选:A.
当a=-3时,b可取-1,-2,-3,|a-b|对应的值为:2,1,0,
当a=-2时,b可取-1,-2,-3,|a-b|对应的值为:1,0,1,
当a=-1时,b可取-1,-2,-3,|a-b|对应的值为:0,1,2,
当a=1时,b可取1,2,3,|a-b|对应的值为:0,1,2,
当a=2时,b可取1,2,3,|a-b|对应的值为:1,0,1,
当a=3时,b可取1,2,3,|a-b|对应的值为:2,1,0,
∴ξ的可能取值为0,1,2,
P(ξ=0)=
| 6 |
| 18 |
| 8 |
| 18 |
| 4 |
| 18 |
∴E(ξ)=0
| 6 |
| 18 |
| 8 |
| 18 |
| 4 |
| 18 |
| 8 |
| 9 |
故选:A.
点评:本题考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意抛物线性质的灵活运用.
练习册系列答案
相关题目
双曲线
-
=1的渐近线方程式是( )
| y2 |
| 9 |
| x2 |
| 4 |
A、y=±
| ||
B、y=±
| ||
C、y=±
| ||
D、y=±
|
已知a>0,a≠1,M>0,N>0,那么下列各式中错误的是( )
| A、logα(M+N)=logαM+logαN | ||
B、logα
| ||
| C、logαMn=nlogαM | ||
| D、logαMN=logαM+logαN |
双曲线
-
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且
•
=0,则此双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| AB |
| BF |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知变量x,y满足约束条件
,则目标函数z=3x-y+3的取值范围为( )
|
A、[-
| ||
B、[
| ||
| C、[-2,3] | ||
| D、[1,6] |
平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是( )
A、(
| ||
| B、(6,-2,-2) | ||
| C、(4,2,2) | ||
| D、(-1,1,4) |
已知m,n是不重合的直线,α,β是不重合的平面,有下列命题:①若m?α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则 m∥α,m∥β;其中正确的命题的个数是( )
| A、0个 | B、1个 | C、2个 | D、3个 |
命题“平行四边形的对角线相等且互相平分”是( )形式命题.
| A、p∨q | B、p∧q |
| C、¬p | D、以上都不是 |